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Solid-phase organic synthesis (SPOS)1 has been used
broadly to assemble small molecule combinatorial libraries
for drug discovery.2 Commonly, solid-phase organic reactions
are performed on either cross-linked polystyrene/TentaGel
resin beads or on polystyrene (PS) grafted polypropylene
MicroTubes/Crowns. Recently, both types of solid supports
have been applied in library syntheses using radio frequency
(RF) tagged MicroKan or MicroTube reactors.3,4

As a novel type of solid support, polystyrene grafted
polypropylene MicroTubes have been modified with a variety
of functional groups and linkers such as chloromethyl
(Merrifield type), 4-hydroxymethylphenoxy (Wang type),
aminomethyl (AM type), and Knorr linker. A combinatorial
library of tyrphostins has been described using aminomethyl-
ated MicroTubes.4 Recently, chloromethyl MicroTubes were
introduced and applied in solid-phase organic syntheses.5 In
addition, polystyrene grafted fluoropolymer MicroTubes were
reported and used in high-temperature applications.6

The physical and chemical properties of grafted polymeric
surfaces such as MicroTubes and Crowns differ from those
of cross-linked resin. The reaction kinetics of polystyrene
and TentaGel based resin beads have been compared, and
the results contradict the popular presumption that solid-phase
reactions perform more readily on “solution-like” TentaGel
resins.7-9 Recently, various cross-linked polystyrene resins
were compared using the attachment of Knorr linker as a
model reaction.10 In this paper, we report the kinetic studies
of six common organic reactions on polystyrene grafted
MicroTubes.

Results and Discussion

I. Organic Reactions on Wang MicroTubes. 1. Oxida-
tion with IBX and Reduction with LiBH 4. As shown in
Scheme 1, Wang MicroTubes1 were oxidized with IBX to
aldehyde2 and reduced back to the alcohol with LiBH4.
Using the modified dansylhydrazine method,8 the reaction
processes were monitored by measuring the increasing
(oxidation) or decreasing (reduction) amount of aldehyde
groups on the MicroTubes. Because the amount of IBX or
LiBH4 used in the reactions was over 10 times excess relative
to the amount of functional groups on the MicroTubes, both
reactions could be treated as a pseudo first-order reaction

(see Experimental Section in the Supporting Information for
detail).11 The observed reaction rate constant (kobs) can
therefore be fitted with a semiempirical equation (eq 1)

where a0 is the reaction conversion percentage when the
reaction is completed andy is the measured reaction product
percentage at each time point. Then, the observed reaction
half time (t1/2) and the observed 99% complete time (t99)
could be calculated with eq 2 and eq 3, respectively,

Figure 1 depicts the reaction time courses of the oxidation
of “Wang” MicroTubes with 100 mM IBX in DMSO/THF
(1:4) at 25°C. An observed rate constant of 1.5× 10-3 s-1

was fitted with eq 1. The observed half time (t1/2) of 460 s
was calculated based on three independent experiments
(Figure 1 and Table 1). The average amount of the formed
aldehyde is 32µmol/MicroTube (Figure 1), and conversion
of 98% was calculated (Table 1) based on the initial
substitution level of 33µmol/MicroTube.12 Using Wang resin
as a control, the same reaction conversion percentage was
obtained under identical reaction conditions.13
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Figure 1. Three independent time courses of oxidation (solid) and
reduction (open) on Wang MicroTubes. Experimental conditions:
50 mL of 0.1 M IBX in 1:4 DMSO/THF at 25°C for oxidation
reaction; 50 mM LiBH4 in THF for reduction reaction. Lines are
the theoretical fitting with an observed rate constant of 1.5× 10-3

s-1 for oxidation reaction (solid line) or the fitting with an observed
rate constant of 3.8× 10-3 s-1 for reduction reaction (dashed line),
respectively.

Scheme 1

y ) a0(1 - e-kobst) (1)

t1/2 ) 0.69/kobs (2)

t99 ) 6.7t1/2 (3)
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Figure 1 also depicts the decrease of aldehyde groups on
the MicroTube when the aldehyde MicroTubes2 were
reduced with 50 mM LiBH4 in THF. An observed rate
constant of 3.8× 10-3 s-1 was fitted with eq 1 based on
three independent experiments (Figure 1). In addition, FTIR
spectra confirmed that the aldehyde groups on the Micro-
Tubes were completely reduced to hydroxyl groups.14

2. Ester Formation. Scheme 2 shows the coupling of
Wang MicroTubes with 4-acetylbutyric acid3 in DIC/
DMAP/DCM, forming MicroTube-bound ester4. The reac-
tion progress was monitored using the modified dansylhy-
drazine method by measuring the amount of bound ketone
groups.8

As shown in Figure 2, an observed rate constant of
1.1 × 10-3 s-1 and an average amount of 32µmol/Micro-
Tube were fitted with eq 1 (Figure 2 and Table 1). Again,

based on the initial loading of the Wang MicroTubes,12 the
reaction conversion percentage was 98% (Table 1).

II. Organic Reactions on Aminomethylated (AM)
MicroTubes. 1. Amide Formation and Fmoc Deprotec-
tion. Scheme 3 shows the attachment of Knorr linker6 on
aminomethylated MicroTubes5, Fmoc deprotection, and
coupling with N-Fmoc-Phe-OH using PyBOP/DIEA/DCM.15

Table 1. Kinetics of Organic Reactions on Grafted MicroTubes

*Using the concentration/conditions described in the Experimental Section.

Scheme 2

Figure 2. Three independent time courses of ester formation on
Wang MicroTubes. Experimental conditions: 50 mL of 0.1 M
4-acetylbutyric acid/0.1 M DIC/0.1 M DMAP in DCM at 25°C.
Line is the theoretical fitting with an observed rate constant of
1.1 × 10-3 s-1.
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Both reactions were monitored by measuring the amount of
bound Fmoc groups on the MicroTubes.16

Figure 3 shows the time courses of four independent
experiments of Knorr linker attachment on AM MicroTubes
using PyBOP/DIEA/DCM. An observed rate constant of
1.0 × 10-4 s-1 was fitted with eq 1. An observed half time
(t1/2) of 116 min and an observed 99% complete time of 770
min were calculated with eq 2 and eq 3, respectively (Figure
3 and Table 1). Although the amide formation on MicroTube
is slow, the reactions still complete in a practical length of
time with an average conversion of 93%.

The Fmoc groups were then deprotected using 20%
piperidine/DMF, and the process was monitored spectro-
photometrically at 301 nm (extension coefficient: 7800 M-1

cm-1).16 As shown in Figure 4, the observed rate constant is
1.6 × 10-3 s-1, and the observed 99% complete time is 48
min (Figure 4 and Table 1).

After Fmoc deprotection, aminomethyl MicroTubes8
were further coupled with N-Fmoc-Phe-OH using PyBOP/
DIEA/DCM, affording amide9. The observed rate constant
(2.5× 10-4 s-1) is 2.5 times faster than that of the reaction
for Knorr linker attachment on AM MicroTubes (Figure 3
and Table 1).

2. Fmoc-Phe-NH2 Cleavage.MicroTubes9 were cleaved
with 50% TFA/DCM (Scheme 3). The amount of the cleaved
product10, N-Fmoc-Phe-NH2, was measured using Fmoc

Scheme 3

Figure 3. Four independent time courses of attachment of Knorr
linker or coupling of Fmoc-Phe-OH on aminomethylated Micro-
Tubes with 50 mL of 0.2 M Knorr/0.4 M DIEA/0.2 M PyBOP
(solid) or 0.2 M Fmoc-Phe-OH/0.4 M DIEA/0.2 M PyBOP (open)
in DCM at 25°C. Lines are the theoretical fitting with an observed
rate constant of 1.0× 10-4 s-1 for the attachment of Knorr linker
(solid line), or the fitting with an observed rate constant of 2.5×
10-4 s-1 for coupling of Fmoc-Phe-OH (dashed line), respectively.

Figure 4. Three independent time courses of Fmoc deprotection
on Knorr MicroTubes treated with 20% piperidine/DMF at 25°C.
Line is the theoretical fitting with an observed rate constant of
1.6 × 10-3 s-1.
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analysis.16 The structure of the cleavage product was
confirmed by NMR and MS.17 The purity of the final
compound was over 90% as measured by NMR.

An observed cleavage rate of 1.2× 10-4 s-1, and an
average loading of 33µmol/MicroTube of Fmoc-Phe-NH2
were fitted with eq 1 (Figure 5 and Table 1). Again, the
cleavage reaction is slow but still can complete in a
reasonable length of time with an average conversion of 97%
(Figure 5 and Table 1). The overall yield (four steps) is over
80% based on the initial loading of the AM MicroTube (41
µmol/Tube as measured by Fmoc-Cl method, see Experi-
mental Section in Supporting Information).

In summary, six common organic reactions have been
evaluated on MicroTube solid supports. All reactions perform
satisfactorily with over 90% conversion percentage and
complete in useful lengths of time.
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Supporting Information Available. Experimental Sec-
tion including details of the synthesis on Wang and AM
MicroTubes, measurement procedures, and kinetic analysis.
This material is available free of charge via the Internet at
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Figure 5. Time courses of cleavage by 50% TFA/DCM at 25°C.
Line is the theoretical fitting with observed rate constants of 1.2×
10-4 s-1.
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